Code icon

The App is Under a Quick Maintenance

We apologize for the inconvenience. Please come back later

Menu iconMenu iconAlgorithms and Data Structures with Python
Algorithms and Data Structures with Python

Chapter 9: Deciphering Strings and Patterns

Chapter 9: Practical Exercises of Deciphering Strings and Patterns

The following exercises offer practical applications of the concepts discussed in Chapter 9. They provide hands-on experience with string algorithms and text analysis techniques, reinforcing understanding and demonstrating the utility of these methods in real-world scenarios.

Exercise 1: Implement the Boyer-Moore Algorithm for Pattern Searching

  • Objective: Write a function to perform the Boyer-Moore string search algorithm, an efficient method for finding substrings in larger text strings.
  • Note: The Boyer-Moore algorithm is complex, focusing on the "bad character" heuristic.

Solution:

def boyer_moore_search(text, pattern):
    def bad_char_heuristic(pattern):
        bad_char = [-1] * 256
        for i in range(len(pattern)):
            bad_char[ord(pattern[i])] = i
        return bad_char

    m = len(pattern)
    n = len(text)
    bad_char = bad_char_heuristic(pattern)
    s = 0

    while s <= n - m:
        j = m - 1
        while j >= 0 and pattern[j] == text[s + j]:
            j -= 1
        if j < 0:
            return f"Pattern occurs at shift {s}"
            s += (m - bad_char[ord(text[s + m])] if s + m < n else 1)
        else:
            s += max(1, j - bad_char[ord(text[s + j])])
    return "Pattern not found"

# Example Usage
text = "ABAAABCD"
pattern = "ABC"
print(boyer_moore_search(text, pattern))  # Output: Pattern occurs at shift 4

Exercise 2: Create a Basic Regex for Email Extraction

  • Objective: Write a regex pattern to extract email addresses from a given string.
  • Note: The regex should match most common email formats.

Solution:

import re

def extract_emails(text):
    pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}'
    return re.findall(pattern, text)

# Example Usage
text = "Please contact us at info@example.com or support@domain.org."
print(extract_emails(text))  # Output: ['info@example.com', 'support@domain.org']

Exercise 3: Implementing a Simple Suffix Array Construction

  • Objective: Construct a suffix array for a given text string.
  • Note: Suffix arrays are a space-efficient way to store and search for substrings.

Solution:

def build_suffix_array(s):
    return sorted(range(len(s)), key=lambda k: s[k:])

# Example Usage
text = "banana"
print(build_suffix_array(text))  # Output: Suffix array indices for the string "banana"

Exercise 4: Sentiment Analysis Using Pre-trained Models

  • Objective: Utilize a pre-trained NLP model to perform sentiment analysis on a given text.
  • Note: This exercise assumes access to a pre-trained sentiment analysis model, such as those available in libraries like NLTK or TextBlob.

Solution:

from textblob import TextBlob

def analyze_sentiment(text):
    analysis = TextBlob(text)
    return analysis.sentiment

# Example Usage
text = "I love programming in Python!"
print(analyze_sentiment(text))  # Output: Sentiment(polarity=0.5, subjectivity=0.6)

Chapter 9: Practical Exercises of Deciphering Strings and Patterns

The following exercises offer practical applications of the concepts discussed in Chapter 9. They provide hands-on experience with string algorithms and text analysis techniques, reinforcing understanding and demonstrating the utility of these methods in real-world scenarios.

Exercise 1: Implement the Boyer-Moore Algorithm for Pattern Searching

  • Objective: Write a function to perform the Boyer-Moore string search algorithm, an efficient method for finding substrings in larger text strings.
  • Note: The Boyer-Moore algorithm is complex, focusing on the "bad character" heuristic.

Solution:

def boyer_moore_search(text, pattern):
    def bad_char_heuristic(pattern):
        bad_char = [-1] * 256
        for i in range(len(pattern)):
            bad_char[ord(pattern[i])] = i
        return bad_char

    m = len(pattern)
    n = len(text)
    bad_char = bad_char_heuristic(pattern)
    s = 0

    while s <= n - m:
        j = m - 1
        while j >= 0 and pattern[j] == text[s + j]:
            j -= 1
        if j < 0:
            return f"Pattern occurs at shift {s}"
            s += (m - bad_char[ord(text[s + m])] if s + m < n else 1)
        else:
            s += max(1, j - bad_char[ord(text[s + j])])
    return "Pattern not found"

# Example Usage
text = "ABAAABCD"
pattern = "ABC"
print(boyer_moore_search(text, pattern))  # Output: Pattern occurs at shift 4

Exercise 2: Create a Basic Regex for Email Extraction

  • Objective: Write a regex pattern to extract email addresses from a given string.
  • Note: The regex should match most common email formats.

Solution:

import re

def extract_emails(text):
    pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}'
    return re.findall(pattern, text)

# Example Usage
text = "Please contact us at info@example.com or support@domain.org."
print(extract_emails(text))  # Output: ['info@example.com', 'support@domain.org']

Exercise 3: Implementing a Simple Suffix Array Construction

  • Objective: Construct a suffix array for a given text string.
  • Note: Suffix arrays are a space-efficient way to store and search for substrings.

Solution:

def build_suffix_array(s):
    return sorted(range(len(s)), key=lambda k: s[k:])

# Example Usage
text = "banana"
print(build_suffix_array(text))  # Output: Suffix array indices for the string "banana"

Exercise 4: Sentiment Analysis Using Pre-trained Models

  • Objective: Utilize a pre-trained NLP model to perform sentiment analysis on a given text.
  • Note: This exercise assumes access to a pre-trained sentiment analysis model, such as those available in libraries like NLTK or TextBlob.

Solution:

from textblob import TextBlob

def analyze_sentiment(text):
    analysis = TextBlob(text)
    return analysis.sentiment

# Example Usage
text = "I love programming in Python!"
print(analyze_sentiment(text))  # Output: Sentiment(polarity=0.5, subjectivity=0.6)

Chapter 9: Practical Exercises of Deciphering Strings and Patterns

The following exercises offer practical applications of the concepts discussed in Chapter 9. They provide hands-on experience with string algorithms and text analysis techniques, reinforcing understanding and demonstrating the utility of these methods in real-world scenarios.

Exercise 1: Implement the Boyer-Moore Algorithm for Pattern Searching

  • Objective: Write a function to perform the Boyer-Moore string search algorithm, an efficient method for finding substrings in larger text strings.
  • Note: The Boyer-Moore algorithm is complex, focusing on the "bad character" heuristic.

Solution:

def boyer_moore_search(text, pattern):
    def bad_char_heuristic(pattern):
        bad_char = [-1] * 256
        for i in range(len(pattern)):
            bad_char[ord(pattern[i])] = i
        return bad_char

    m = len(pattern)
    n = len(text)
    bad_char = bad_char_heuristic(pattern)
    s = 0

    while s <= n - m:
        j = m - 1
        while j >= 0 and pattern[j] == text[s + j]:
            j -= 1
        if j < 0:
            return f"Pattern occurs at shift {s}"
            s += (m - bad_char[ord(text[s + m])] if s + m < n else 1)
        else:
            s += max(1, j - bad_char[ord(text[s + j])])
    return "Pattern not found"

# Example Usage
text = "ABAAABCD"
pattern = "ABC"
print(boyer_moore_search(text, pattern))  # Output: Pattern occurs at shift 4

Exercise 2: Create a Basic Regex for Email Extraction

  • Objective: Write a regex pattern to extract email addresses from a given string.
  • Note: The regex should match most common email formats.

Solution:

import re

def extract_emails(text):
    pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}'
    return re.findall(pattern, text)

# Example Usage
text = "Please contact us at info@example.com or support@domain.org."
print(extract_emails(text))  # Output: ['info@example.com', 'support@domain.org']

Exercise 3: Implementing a Simple Suffix Array Construction

  • Objective: Construct a suffix array for a given text string.
  • Note: Suffix arrays are a space-efficient way to store and search for substrings.

Solution:

def build_suffix_array(s):
    return sorted(range(len(s)), key=lambda k: s[k:])

# Example Usage
text = "banana"
print(build_suffix_array(text))  # Output: Suffix array indices for the string "banana"

Exercise 4: Sentiment Analysis Using Pre-trained Models

  • Objective: Utilize a pre-trained NLP model to perform sentiment analysis on a given text.
  • Note: This exercise assumes access to a pre-trained sentiment analysis model, such as those available in libraries like NLTK or TextBlob.

Solution:

from textblob import TextBlob

def analyze_sentiment(text):
    analysis = TextBlob(text)
    return analysis.sentiment

# Example Usage
text = "I love programming in Python!"
print(analyze_sentiment(text))  # Output: Sentiment(polarity=0.5, subjectivity=0.6)

Chapter 9: Practical Exercises of Deciphering Strings and Patterns

The following exercises offer practical applications of the concepts discussed in Chapter 9. They provide hands-on experience with string algorithms and text analysis techniques, reinforcing understanding and demonstrating the utility of these methods in real-world scenarios.

Exercise 1: Implement the Boyer-Moore Algorithm for Pattern Searching

  • Objective: Write a function to perform the Boyer-Moore string search algorithm, an efficient method for finding substrings in larger text strings.
  • Note: The Boyer-Moore algorithm is complex, focusing on the "bad character" heuristic.

Solution:

def boyer_moore_search(text, pattern):
    def bad_char_heuristic(pattern):
        bad_char = [-1] * 256
        for i in range(len(pattern)):
            bad_char[ord(pattern[i])] = i
        return bad_char

    m = len(pattern)
    n = len(text)
    bad_char = bad_char_heuristic(pattern)
    s = 0

    while s <= n - m:
        j = m - 1
        while j >= 0 and pattern[j] == text[s + j]:
            j -= 1
        if j < 0:
            return f"Pattern occurs at shift {s}"
            s += (m - bad_char[ord(text[s + m])] if s + m < n else 1)
        else:
            s += max(1, j - bad_char[ord(text[s + j])])
    return "Pattern not found"

# Example Usage
text = "ABAAABCD"
pattern = "ABC"
print(boyer_moore_search(text, pattern))  # Output: Pattern occurs at shift 4

Exercise 2: Create a Basic Regex for Email Extraction

  • Objective: Write a regex pattern to extract email addresses from a given string.
  • Note: The regex should match most common email formats.

Solution:

import re

def extract_emails(text):
    pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}'
    return re.findall(pattern, text)

# Example Usage
text = "Please contact us at info@example.com or support@domain.org."
print(extract_emails(text))  # Output: ['info@example.com', 'support@domain.org']

Exercise 3: Implementing a Simple Suffix Array Construction

  • Objective: Construct a suffix array for a given text string.
  • Note: Suffix arrays are a space-efficient way to store and search for substrings.

Solution:

def build_suffix_array(s):
    return sorted(range(len(s)), key=lambda k: s[k:])

# Example Usage
text = "banana"
print(build_suffix_array(text))  # Output: Suffix array indices for the string "banana"

Exercise 4: Sentiment Analysis Using Pre-trained Models

  • Objective: Utilize a pre-trained NLP model to perform sentiment analysis on a given text.
  • Note: This exercise assumes access to a pre-trained sentiment analysis model, such as those available in libraries like NLTK or TextBlob.

Solution:

from textblob import TextBlob

def analyze_sentiment(text):
    analysis = TextBlob(text)
    return analysis.sentiment

# Example Usage
text = "I love programming in Python!"
print(analyze_sentiment(text))  # Output: Sentiment(polarity=0.5, subjectivity=0.6)