Code icon

The App is Under a Quick Maintenance

We apologize for the inconvenience. Please come back later

Menu iconMenu iconNatural Language Processing with Python Updated Edition
Natural Language Processing with Python Updated Edition

Quiz Part III: Topic Modeling and Text Summarization

Answers

  1. B) To identify the underlying themes or topics in a collection of documents
  2. C) Latent Semantic Analysis (LSA)
  3. B) HDP automatically determines the number of topics
  4. C) Gensim
  5. C) The probability distribution of words given a topic
  6. B) Extractive summarization selects key sentences from the original text, while abstractive summarization generates new sentences.
  7. B) PageRank
  8. C) BART
  9. B) Abstractive summarization produces more coherent and readable summaries
  10. D) Hugging Face Transformers

Answers

  1. B) To identify the underlying themes or topics in a collection of documents
  2. C) Latent Semantic Analysis (LSA)
  3. B) HDP automatically determines the number of topics
  4. C) Gensim
  5. C) The probability distribution of words given a topic
  6. B) Extractive summarization selects key sentences from the original text, while abstractive summarization generates new sentences.
  7. B) PageRank
  8. C) BART
  9. B) Abstractive summarization produces more coherent and readable summaries
  10. D) Hugging Face Transformers

Answers

  1. B) To identify the underlying themes or topics in a collection of documents
  2. C) Latent Semantic Analysis (LSA)
  3. B) HDP automatically determines the number of topics
  4. C) Gensim
  5. C) The probability distribution of words given a topic
  6. B) Extractive summarization selects key sentences from the original text, while abstractive summarization generates new sentences.
  7. B) PageRank
  8. C) BART
  9. B) Abstractive summarization produces more coherent and readable summaries
  10. D) Hugging Face Transformers

Answers

  1. B) To identify the underlying themes or topics in a collection of documents
  2. C) Latent Semantic Analysis (LSA)
  3. B) HDP automatically determines the number of topics
  4. C) Gensim
  5. C) The probability distribution of words given a topic
  6. B) Extractive summarization selects key sentences from the original text, while abstractive summarization generates new sentences.
  7. B) PageRank
  8. C) BART
  9. B) Abstractive summarization produces more coherent and readable summaries
  10. D) Hugging Face Transformers