Code icon

The App is Under a Quick Maintenance

We apologize for the inconvenience. Please come back later

Menu iconMenu iconNLP with Transformers: Fundamentals and Core Applications
NLP with Transformers: Fundamentals and Core Applications

Project 1: Sentiment Analysis with BERT

7. Step 4: Fine-Tuning BERT

We’ll fine-tune a pre-trained BERT model for binary classification (positive or negative sentiment).

Code Example: Fine-Tuning

# Load pre-trained BERT model
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=8,
    num_train_epochs=3,
    weight_decay=0.01,
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_train,
    eval_dataset=tokenized_test,
)

# Train the model
trainer.train()

7. Step 4: Fine-Tuning BERT

We’ll fine-tune a pre-trained BERT model for binary classification (positive or negative sentiment).

Code Example: Fine-Tuning

# Load pre-trained BERT model
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=8,
    num_train_epochs=3,
    weight_decay=0.01,
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_train,
    eval_dataset=tokenized_test,
)

# Train the model
trainer.train()

7. Step 4: Fine-Tuning BERT

We’ll fine-tune a pre-trained BERT model for binary classification (positive or negative sentiment).

Code Example: Fine-Tuning

# Load pre-trained BERT model
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=8,
    num_train_epochs=3,
    weight_decay=0.01,
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_train,
    eval_dataset=tokenized_test,
)

# Train the model
trainer.train()

7. Step 4: Fine-Tuning BERT

We’ll fine-tune a pre-trained BERT model for binary classification (positive or negative sentiment).

Code Example: Fine-Tuning

# Load pre-trained BERT model
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=8,
    num_train_epochs=3,
    weight_decay=0.01,
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_train,
    eval_dataset=tokenized_test,
)

# Train the model
trainer.train()