Obtener Acceso
PARA mejora tus habilidades
Más de Más de 8.000 Libros vendidos
4.4 estrellas EN Amazon

Introduction to Natural Language Processing with Transformers

Unlock the power of AI for language! This guide explores transformers, a cutting-edge technique in NLP. Build advanced applications for tasks like translation and question answering.

Mejora tus habilidades de programación

Lo Que Obtendrás de Este Libro

Acerca de este libro

Learn NLP with Transformers

Dive into the revolutionary world of Natural Language Processing with Transformers through this comprehensive guide by Cuantum Technologies. From basic principles of deep learning and natural language processing to the advanced workings of Transformer models, this book takes you on an enlightening journey into the future of NLP.

Inside the "Introduction to Natural Language Processing with Transformers," you'll discover the evolution of NLP, the essence of the Transformer architecture, and its unique self-attention mechanism. Learn about popular Transformer models like BERT, GPT, and T5, and understand their applications across a wide array of NLP tasks, including text classification, sentiment analysis, machine translation, and more.

Beginner-friendly yet comprehensive, the book starts with the basic principles of NLP and deep learning, introducing you to the concept of Transformers. As you progress, you'll explore the various versions of these models, understanding their strengths and capabilities. You'll get hands-on experience by applying these models to real-world tasks through numerous practical projects, guiding you through data preprocessing, model training, and fine-tuning techniques.

Understand Natural Language Processing with Transformers

Discover the transformative power of advanced NLP with the groundbreaking models that are reshaping the landscape of artificial intelligence and machine learning. Welcome to "Introduction to Natural Language Processing with Transformers" by Cuantum Technologies, your comprehensive guide into the world of Transformer models. How does Google's search engine understand your queries?

How does Alexa comprehend and respond to your commands? The answer lies in Natural Language Processing (NLP) and, more specifically, in Transformer models. These AI models have revolutionized NLP, breaking down the barriers between humans and machines in communication.

Furthermore, you'll learn about other popular transformer models like Transformer-XL, DistilBERT, and RoBERTa, and will understand their applications across different NLP tasks. Learn how to implement these models using popular libraries like Hugging Face's Transformers, TensorFlow, and PyTorch.

The book also takes you into the future, discussing efficiency improvements like ALBERT and Reformer, large-scale models like GPT-3, Transformer models for multimodal tasks, and the open challenges that lie ahead.

To ensure you have a well-rounded learning experience, the book includes practical exercises, a detailed glossary of terms, and a rich list of references for further study.

"Introduction to Natural Language Processing with Transformers" is a one-stop resource for anyone interested in mastering the principles and practices of modern NLP with Transformer models. Whether you're a data scientist, a student, or an AI enthusiast, this book has something to offer.

Begin your transformative journey today, equip yourself with the tools and understanding to leverage the power of NLP and transform your AI projects. Buy the book now and step into the future of Natural Language Processing!

Tabla de contenido

Chapter 1: Introduction to Natural Language Processing

1.1 Brief History of NLP

1.2 Basic Concepts of NLP

1.3 Traditional Methods in NLP

1.4 Looking Forward

1.5 Practical Exercises of Chapter 1: Introduction to Natural Language Processing

Chapter 2: Machine Learning and Deep Learning for NLP

2.1 Introduction to Machine Learning

2.2 Neural Networks and Their Relevance to NLP

2.3 Types of Neural Networks for NLP

2.4 Word Embeddings

2.5 Text Preprocessing Techniques

Chapter 3: Transition to Transformers: Attention Mechanisms

3.1 The Shortcomings of RNNs and CNNs

3.2 Understanding Attention and Its Significance

3.3 Introduction to Transformers and Their Architecture

3.4 Detailed Breakdown of the Transformer Architecture

3.5 Configuring and Tuning Transformer Models

Chapter 4: The Transformer Architecture

4.1 Origins: Attention is All You Need

4.2 Understanding the Encoder-Decoder Structure

4.3 Self-Attention Mechanism

4.4 Multi-Head Attention

4.5 Interpreting Attention Scores

Chapter 5: Positional Encoding in Transformers

5.1 Why Positional Encoding?

5.2 Understanding Positional Encoding

5.3 Applying Positional Encoding in Transformers

5.4 Alternative Approaches to Positional Encoding

5.5 Practical Exercises of Chapter 5: Positional Encoding in Transformers

Chapter 6: Self-Attention and Multi-Head Attention in Transformers

6.1 Introduction to the Attention Mechanism

6.2 Self-Attention in Transformers

6.3 Multi-Head Attention in Transformers

6.4 The Mathematics of Attention

6.5 Advanced Aspects of Attention

Chapter 7: Prominent Transformer Models and Their Applications

7.1 BERT: Understanding and Application

7.2 Tokenization Specifics with Transformers

7.3 Understanding the BERT Output

7.4 GPT and its versions: Understanding and Application

7.5 Overview of Other Transformer Models

Chapter 8: Advanced Applications of Transformer Models

8.1 Text Classification

8.2 Named Entity Recognition

8.3 Machine Translation: Challenges and Transformer Solutions

8.4 Practical Exercises of Chapter 8: Advanced Applications of Transformer Models

Chapter 9: Implementing Transformer Models with Popular Libraries

9.1 Introduction to Hugging Face’s Transformers Library

9.2 Tokenization with Hugging Face’s Transformers Library

9.3 Text Classification with Hugging Face’s Transformers Library

9.4 Named Entity Recognition with Hugging Face’s Transformers Library

9.5 Question Answering with Hugging Face’s Transformers Library

Chapter 10: Training, Fine-tuning, and Evaluation of Transformer Models

10.1 Preprocessing Data for Transformers

10.2 Model Training and Hyperparameters

10.3 Fine-Tuning Techniques

10.4 Evaluation Metrics for NLP Tasks

10.5 Practical Exercises of Chapter 10: Training, Fine-tuning, and Evaluation of Transformer Models

Chapter 11: Recent Developments and Future of Transformers

11.1 Efficiency Improvements: ALBERT, Reformer, and more

11.2 Large Scale Models: GPT-3

11.3 Transformer Models for Multimodal Tasks

11.4 Future Directions and Open Challenges

11.5 Practical Exercises of Chapter 11: Recent Developments and Future of Transformers

Chapter 12: Conclusion and Further Resources

12.1 Recap of Key Learnings

12.2 Future Outlook

Chapter 13: Appendices

13.1 Glossary of Terms

13.2 References

Reseñas

Lo que dicen nuestros lectores sobre este libro

¡Explore las reseñas para comprender por qué este libro es una excelente elección! Descubra cómo otros se han beneficiado del conocimiento y las ideas que proporciona. Pruebe el emocionante contenido que le espera y compruebe si este libro es el libro perfecto para su viaje.

Recomendado por decenas de personas
Reseña de Amazon

Tiziano

"I never thought I'd get so engrossed in a tech book, but "Introduction to Natural Language Processing with Transformers" was a game-changer for me. I've always been curious about how Siri or Alexa understands my commands. Thanks to Cuantum Technologies, I now have a clearer grasp of NLP and how Transformer models play a vital role. The mix of theoretical knowledge and hands-on projects was perfectly balanced. Working through the book, I've personally implemented BERT and GPT models using the free repository code, and I must say, the experience was both enlightening and rewarding. The future insights about models like GPT-3 have me excited about the next wave in AI. For someone like me, who had a basic understanding of AI but wanted to delve deeper, this book was the perfect guide. Highly recommended for anyone looking to dive into the world of NLP!"

Reseña de Amazon

Dustin

As I delved into 'Introduction to Natural Language Processing with Transformers' by Cuantum Technologies, I found myself embarking on an exciting journey through the fascinating world of Transformer models in NLP. Whether you're an experienced data scientist like me, or simply someone intrigued by the AI revolution, this book is your comprehensive guide. It not only introduces the core concepts but also takes you step by step through their practical application. From grasping the fundamentals of language models to navigating the complexities of models like BERT and GPT, this book covers it all.

Comience su viaje de aprendizaje hoy

Desbloquear el acceso

Es su elección, libro de tapa blanda, libro electrónico o Pase de acceso completo a toda nuestra biblioteca de programación

Libro de tapa blanda en Amazon
Cómpralo en Amazon
  • Libro de tapa blanda enviado desde Amazon
  • Acceso gratuito al repositorio de código
  • Atención al cliente de primera calidad
Acceso al libro
24,90$
  • Plataforma digital de aprendizaje electrónico
  • Contenido de vídeo adicional gratuito
  • Rentable
  • Atención al cliente de primera calidad
  • Recursos de código fáciles de copiar y pegar
  • Aprenda en cualquier lugar
Acceso ilimitado a toda la biblioteca
8,25$/mes
Conozca más
  • Todo, desde Book Access
  • Acceso ilimitado a la biblioteca de libros
  • 50% de descuento en libros de bolsillo
  • Acceso anticipado a nuevos lanzamientos
  • Contenido de vídeo exclusivo
  • Recomendaciones de libros mensuales
  • Actualizaciones de libros ilimitadas
  • Atención al cliente VIP 24/7
  • Desafíos de programación
Preguntas frecuentes

Encuentre respuestas a preguntas frecuentes sobre los formatos de libros, las opciones de compra y los detalles de la suscripción.

Nuestro plan de suscripción ofrece acceso ilimitado a toda nuestra biblioteca de libros de programación durante un año. Es una forma rentable de mejorar tu proceso de aprendizaje.
Para comprar libros, simplemente navegue por nuestra colección, seleccione los que desee y proceda al pago. Ofrecemos varias opciones de pago para su comodidad.
Nuestros libros están disponibles en formato digital e impreso. Puede elegir el formato que se adapte a sus preferencias y estilo de lectura.
Una vez que hayas comprado un libro, podrás acceder a él a través del panel de control de tu cuenta. Desde allí, puedes descargar la versión digital o ver tu historial de pedidos.
Para cancelar su suscripción fácilmente en su panel de control. Si necesita ayuda, póngase en contacto con nuestro equipo de soporte. Le ayudarán con el proceso de cancelación y con cualquier consulta relacionada.

Este libro forma parte de nuestra

Ruta de aprendizaje

Más libros sobre esta Ruta de aprendizaje

No se ha encontrado ningún artículo.
Cookie Consent

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.