Obtener Acceso
PARA mejora tus habilidades
Más de Más de 8.000 Libros vendidos
4.4 estrellas EN Amazon

Generative Deep Learning with Python

Explore cutting-edge AI with Python! This book delves into generative deep learning, a technique for creating entirely new data, like images, music, or even text.

Mejora tus habilidades de programación

Lo Que Obtendrás de Este Libro

Acerca de este libro

Unleash the Power of Generative Models: Learn Deep Learning with Python

The world of artificial intelligence is rapidly evolving, and generative models are at the forefront of this exciting revolution. These powerful tools have the ability to create entirely new data, from realistic images and music to innovative text formats and even scientific discoveries.

"Generative Deep Learning with Python" is your comprehensive guide to harnessing the potential of generative models. This book takes you on a hands-on journey through the fascinating world of deep learning, equipping you with the necessary skills and knowledge to build and experiment with your own generative models using Python.

Master the Art of Generating Data: A Practical Guide to Deep Learning with Python

Have you ever wondered how machines can create realistic images, compose captivating music, or even generate innovative scientific text formats? The answer lies in the art of generating data using deep learning techniques.

"Generative Deep Learning with Python" unlocks the secrets behind this captivating field. This practical guide equips you with the essential Python skills and deep learning knowledge needed to master the art of data generation.

This book is designed for both aspiring and experienced data scientists and programmers. With its clear explanations, step-by-step code examples, and practical exercises, you'll gain the confidence and expertise to not only understand generative models but also build and implement them in your own projects.

Whether you're a seasoned data scientist seeking to expand your skillset or a curious programmer eager to explore the cutting edge of AI, this book offers an accessible and comprehensive learning experience. Through in-depth explanations, practical exercises, and real-world applications, you'll gain a thorough understanding of the core concepts behind generative models, including:

  • Variational Autoencoders (VAEs): Learn how to compress and reconstruct data, enabling the generation of new data points similar to the training data.
  • Generative Adversarial Networks (GANs): Discover how to pit two neural networks against each other, fostering the creation of incredibly realistic data.
  • Autoregressive models: Explore models that generate data one step at a time, like text or music, allowing for sequential data creation.

Through a series of engaging projects and real-world applications, you'll delve into the fascinating world of generative models, including:

  • Building image generation models: Learn how to create new images that resemble the training data, potentially fostering applications in creative design or medical imaging.
  • Text generation with deep learning: Explore techniques for generating realistic and coherent text formats, from creative writing prompts to code generation.
  • Music generation with LSTMs: Discover how to harness the power of Long Short-Term Memory (LSTM) networks to compose captivating musical pieces.

By the end of this journey, you'll be well-equipped to not only understand generative models but also confidently apply them to solve real-world problems across various domains.

Ready to embark on your journey into the world of generative deep learning? Get your copy of "Generative Deep Learning with Python" today!

Tabla de contenido

Chapter 1: Introduction to Deep Learning

1.1 Basics of Neural Networks

1.2 Overview of Deep Learning

1.3 Practical Exercises of Chapter 1: Introduction to Deep Learning

Chapter 2: Understanding Generative Models

2.1 Concept and Importance of Generative Models

2.2 Types of Generative Models

2.3 Training Generative Models

2.4 Challenges and Solutions in Training Generative Models

2.5 Practical Exercises of Chapter 2: Understanding Generative Models

Chapter 3: Deep Dive into Generative Adversarial Networks (GANs)

3.1 Understanding GANs

3.2 Architecture of GANs

3.3 Training GANs

3.4 Evaluating GANs

3.5 Variations of GANs

Chapter 4: Project: Face Generation with GANs

4.1 Data Collection and Preprocessing

4.2 Model Creation

4.3 Training the GAN

4.4 Generating New Faces

4.5 Advanced Topics

Chapter 5: Exploring Variational Autoencoders (VAEs)

5.1 Understanding Variational Autoencoders (VAEs)

5.2 Architecture of Variational Autoencoders (VAEs)

5.3 Training Variational Autoencoders (VAEs)

5.4 Evaluating VAEs

5.5 Variations of VAEs

Chapter 6: Project: Handwritten Digit Generation with VAEs

6.1 Data Collection and Preprocessing

6.2 Model Creation

6.3 Training the VAE

6.4 Generating New Handwritten Digits

6.5 Evaluating the Model

Chapter 7: Understanding Autoregressive Models

7.1 PixelRNN and PixelCNN

7.2 Transformer-based Models

7.3 Use Cases and Applications of Autoregressive Models

7.4 Advanced Concepts in Autoregressive Models

7.5 Practical Exercises of Chapter 7: Understanding Autoregressive Models

Chapter 8: Project: Text Generation with Autoregressive Models

8.1 Data Collection and Preprocessing

8.2 Model Creation

8.3 Training the Autoregressive Model

8.4 Generating New Text

8.5 Evaluating the Model

Chapter 9: Advanced Topics in Generative Deep Learning

9.1 Improved Training Techniques

9.2 Understanding Mode Collapse

9.3 Dealing with High Dimensional Data

9.4 Incorporating Domain Knowledge into Generative Models

9.5 Future Directions and Emerging Techniques in Generative Deep Learning

Chapter 10: Navigating the Future Landscape of Generative Deep Learning

10.1 Emerging Trends in Generative Deep Learning

10.2 Impact on Various Industries

10.3 Ethical Considerations in Generative Deep Learning

10.4 Social Implications of Generative Deep Learning

10.5 Policy and Regulatory Outlook

Reseñas

Lo que dicen nuestros lectores sobre este libro

¡Explore las reseñas para comprender por qué este libro es una excelente elección! Descubra cómo otros se han beneficiado del conocimiento y las ideas que proporciona. Pruebe el emocionante contenido que le espera y compruebe si este libro es el libro perfecto para su viaje.

Recomendado por decenas de personas
Reseña de Amazon

Mike Rose

There was a lot to learn here. It's well-written and well-formatted. Very informative and worth the read if you're interested in harnessing AI to accent your creative process.

Reseña de Amazon

Simone Vonn

While slightly technical for beginners, this well-organized book offers clear insights into machine learning, neural networks, and applications like deepfakes. Ideal for Python developers, it serves as a solid framework for understanding the brave new world of generative AI.

Comience su viaje de aprendizaje hoy

Desbloquear el acceso

Es su elección, libro de tapa blanda, libro electrónico o Pase de acceso completo a toda nuestra biblioteca de programación

Libro de tapa blanda en Amazon
Cómpralo en Amazon
  • Libro de tapa blanda enviado desde Amazon
  • Acceso gratuito al repositorio de código
  • Atención al cliente de primera calidad
Acceso al libro
24,90$
  • Plataforma digital de aprendizaje electrónico
  • Contenido de vídeo adicional gratuito
  • Rentable
  • Atención al cliente de primera calidad
  • Recursos de código fáciles de copiar y pegar
  • Aprenda en cualquier lugar
Acceso ilimitado a toda la biblioteca
8,25$/mes
Conozca más
  • Todo, desde Book Access
  • Acceso ilimitado a la biblioteca de libros
  • 50% de descuento en libros de bolsillo
  • Acceso anticipado a nuevos lanzamientos
  • Contenido de vídeo exclusivo
  • Recomendaciones de libros mensuales
  • Actualizaciones de libros ilimitadas
  • Atención al cliente VIP 24/7
  • Desafíos de programación
Preguntas frecuentes

Encuentre respuestas a preguntas frecuentes sobre los formatos de libros, las opciones de compra y los detalles de la suscripción.

Nuestro plan de suscripción ofrece acceso ilimitado a toda nuestra biblioteca de libros de programación durante un año. Es una forma rentable de mejorar tu proceso de aprendizaje.
Para comprar libros, simplemente navegue por nuestra colección, seleccione los que desee y proceda al pago. Ofrecemos varias opciones de pago para su comodidad.
Nuestros libros están disponibles en formato digital e impreso. Puede elegir el formato que se adapte a sus preferencias y estilo de lectura.
Una vez que hayas comprado un libro, podrás acceder a él a través del panel de control de tu cuenta. Desde allí, puedes descargar la versión digital o ver tu historial de pedidos.
Para cancelar su suscripción fácilmente en su panel de control. Si necesita ayuda, póngase en contacto con nuestro equipo de soporte. Le ayudarán con el proceso de cancelación y con cualquier consulta relacionada.

Este libro forma parte de nuestra

Ruta de aprendizaje

Más libros sobre esta Ruta de aprendizaje

No se ha encontrado ningún artículo.
Cookie Consent

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.